Refine your search:     
Report No.
 - 
Search Results: Records 1-20 displayed on this page of 76

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

JAEA Reports

Development of fundamental technologies for domestic production of medical radioisotope (technetium-99m); The First and second phase report (FY2014-2020)

Project 6 Meeting Members for Tsukuba International Strategic Zone

JAEA-Review 2021-016, 102 Pages, 2021/11

JAEA-Review-2021-016.pdf:12.76MB

In December 2011, the Prime Minister designated Tsukuba and some areas in Ibaraki Prefecture as "Comprehensive Special Zones". In the Tsukuba International Strategic Zone, nine advanced research and development (R&D) projects are underway with the goal of promoting industrialization of life innovation and green innovation utilizing the science and technology in Tsukuba. In these projects, the domestic production of medical radioisotope (Technetium-99m, $$^{rm 99m}$$Tc) was certified as a new project in October 2013, and R&D have been performed in collaboration with related organizations with Japan Atomic Energy Agency (JAEA) as the project leader. Japan is the third largest consumer of molybdenum-99 ($$^{99}$$Mo) after the United States and Europe, and all $$^{99}$$Mo are imported. Supply will be insufficient if overseas reactors are shut down due to trouble or if transportation (air and land transportations) is stopped due to volcanic eruptions and some accidents. Thus, early domestic production of $$^{99}$$Mo is strongly required. This project is a technology development aimed at domestic production of $$^{99}$$Mo, which is a raw material of $$^{rm 99m}$$Tc used as a diagnostic agent. This report summarizes the activities carried out in the first and second phase of the domestic production of medical radioisotope ($$^{rm 99m}$$Tc) (here referred to as the "Project 6") in Tsukuba International Strategic Zone (FY2014-2020).

JAEA Reports

Development of dry rework technology in MOX fuel fabrication process; Selection and characterization of pulverizer for particle size adjustment of dry recycled powder

Yamamoto, Kazuya; Makino, Takayoshi; Iso, Hidetoshi; Segawa, Tomoomi; Kawaguchi, Koichi; Ishii, Katsunori

JAEA-Technology 2021-002, 31 Pages, 2021/05

JAEA-Technology-2021-002.pdf:4.37MB

In the MOX fuel fabrication process, a dry recycle technology has been developed to effectively utilize dry recovered powder obtained by crushing out of specification MOX pellets. The particle size of the dry recovery powder is divided into three classes; coarse size (about 250 $$mu$$m or less), medium size (about 100 $$mu$$m or less), and fine size (about 10 $$mu$$m or less) by the current crushers, and the effect of controlling the density of sintered pellets is obtained to a certain extent by adding the dry recovered powder to the raw powder. In this report, with the aim of more finely adjusting the particle size of the dry recovery powder, a buhrstone mill and a collision plate-type jet mill were selected as grinders that can adjust the dry recovered powder within a particle size range of 250 $$mu$$m or less, and the particle size adjustment test was conducted to pulverize the tungsten-carbide-cobalt (WC-Co) pellets as a simulated material for the MOX pellets. The buhrstone mill can control the particle size within a certain range by adjusting the grindstone clearance, but particles with a particle size of 250 $$mu$$m or more may be discharged. On the contrary, it is expected that the particle size of the collision plate-type jet mill can be controlled in the range of 250 $$mu$$m or less by adjusting the classification zone clearance. Therefore, the collision plate-type jet mill is more suitable for adjusting the particle size of the dry recovered powder than the buhrstone mill.

Journal Articles

Flexible fuel cycle system for the effective management of plutonium

Fukasawa, Tetsuo*; Hoshino, Kuniyoshi*; Yamashita, Junichi*; Takano, Masahide

Journal of Nuclear Science and Technology, 57(11), p.1215 - 1222, 2020/11

 Times Cited Count:1 Percentile:12.16(Nuclear Science & Technology)

The flexible fuel cycle initiative system (FFCI system) has been developed to reduce spent fuel (SF) amounts, to keep high availability factor for the reprocessing plant and to increase the proliferation resistance for the recovered Pu. The system separates most U from the SF at first, and the residual material called recycle material (RM) which contains Pu, minor actinides, fission products and remaining U will go to Pu(+U) recovery from the RM for Pu utilizing reactor in future. The Pu utilizing reactor is FBR or LWR with MOX fuel. The RM is the buffer material between SF reprocessing and Pu utilizing reactor with compact size and high proliferation resistance, which can suppress the amount of relatively pure Pu. The innovative technologies of FFCI are most U separation and temporary RM storage. They are investigated by the literature survey, fundamental experiments using simulated material and analyses using simulation code. This paper summarizes the feasibility confirmation results of FFCI.

Journal Articles

No secondary waste recycle technology for rare metals using the hydrophilic extraction with phase transfer phenomena

Tsukahara, Takehiko*; Saga, Kaname*; Suzuki, Hideya*; Matsumura, Tatsuro

Kurin Tekunoroji, 29(12), p.4 - 7, 2019/12

no abstracts in English

Journal Articles

Uranium-based TRU multi-recycling with thermal neutron HTGR to reduce environmental burden and threat of nuclear proliferation

Fukaya, Yuji; Goto, Minoru; Ohashi, Hirofumi; Yan, X.; Nishihara, Tetsuo; Tsubata, Yasuhiro; Matsumura, Tatsuro

Journal of Nuclear Science and Technology, 55(11), p.1275 - 1290, 2018/11

AA2017-0752.pdf:1.25MB

 Times Cited Count:0 Percentile:0.01(Nuclear Science & Technology)

To reduce environmental burden and thread of nuclear proliferation, multi-recycling fuel cycle with High Temperature Gas-cooled Reactor (HTGR) has been investigated. Those problems are solved by incinerating TRans Uranium (TRU) nuclides, which is composed of plutonium and Minor Actinoide (MA), and there is concept to realize TRU incineration by multi-recycling with Fast Breeder Reactor (FBR). In this study, multi-recycling is realized even with thermal reactor by feeding fissile uranium from outside of the fuel cycle instead of breeding fissile nuclide. In this fuel cycle, recovered uranium by reprocessing and natural uranium are enriched and mixed with recovered TRU by reprocessing and partitioning to fabricate fresh fuels. The fuel cycle was designed for a Gas Turbine High Temperature Reactor (GTHTR300), whose thermal power is 600 MW, including conceptual design of uranium enrichment facility. Reprocessing is assumed as existing Plutonium Uranium Redox EXtraction (PUREX) with four-group partitioning technology. As a result, it was found that the TRU nuclides excluding neptunium can be recycled by the proposed cycle. The duration of potential toxicity decaying to natural uranium level can be reduced to approximately 300 years, and the footprint of repository for High Level Waste (HLW) can be reduced by 99.7% compared with GTHTR300 using existing reprocessing and disposal technology. Suppress plutonium is not generated from this cycle. Moreover, incineration of TRU from Light Water Reactor (LWR) cycle can be performed in this cycle.

Journal Articles

Analysis of fast reactor fuel irradiation behavior in the MA recycle system

Ozawa, Takayuki

Proceedings of 25th International Conference on Nuclear Engineering (ICONE-25) (CD-ROM), 8 Pages, 2017/07

In a recycle system for minor actinides (MAs) currently studied to reduce the degree of hazard and the amount of high-level radioactive wastes, MAs will be recycled by reprocessing and irradiating as mixed oxide (MOX) with plutonium (Pu) and uranium (U) in a fast reactor. MA content is expected to be $$sim$$5 wt.% in the future recycle system, and MAs might affect irradiation behavior of MA-MOX fuels. The main influences of MA-containing would be increase of fuel temperature and cladding stress, and the important behaviors would be fuel restructuring, redistribution, helium (He) generation and cladding corrosion. The MA-containing influences were evaluated with CEPTAR.V2, including fuel properties and analysis models to evaluate the MA-MOX fuel irradiation behavior, by using the results of highly americium (Am) containing MOX irradiation experiment, B8-HAM, performed in Joyo. The irradiation behavior of Am-MOX fuels could be precisely analyzed and revealed the influences of Am-containing.

Journal Articles

Innovative water reactor

Onuki, Akira

Nihon Kikai Gakkai Doryoku Enerugi Shisutemu Bumon Nyusu Reta, (29), p.3 - 5, 2004/10

no abstracts in English

Journal Articles

Status of fuel transmutation programmes in Japan and France; Lessons drawn from results

Arai, Yasuo; Pillon, S.*

Proceedings of International Conference ATALANTE 2004 Advances for Future Nuclear Fuel Cycles (CD-ROM), 9 Pages, 2004/06

no abstracts in English

Journal Articles

Preliminary survey for recycle of beryllium reflector frames used in the JMTR

Ishitsuka, Etsuo; Nakamichi, Masaru*; Uchida, Munenori*; Kawamura, Hiroshi; Kaminaga, Katsuo; Tsuboi, Kazuaki; Kusunoki, Hidehiko

JAERI-Conf 2004-006, p.262 - 264, 2004/03

no abstracts in English

Journal Articles

Design of small reduced-moderation water reactor

Okubo, Tsutomu; Iwamura, Takamichi; Takeda, Renzo*; Moriya, Kumiaki*; Yamauchi, Toyoaki*; Aritomi, Masanori*

Nihon Kikai Gakkai 2003-Nendo Nenji Taikai Koen Rombunshu, Vol.3, p.245 - 246, 2003/08

A design study on a 300MWe class small Reduced-Moderation Water Reactor (RMWR) has been performed, based on the experienced LWR technology. The core can be cooled by the natural circulation and can achieve a conversion ratio of 1.01, a negative void reactivity coefficient, a core average burn-up of 65 GWd/t and a cycle length of 25 months. The system has been simplified as much as possible by introducing the passive safety components, in order to reduce the construction cost per electric power output overcoming “the scale demerit" for a small reactor comparing with the large one. The results show a 1.35 times higher cost than for the ABWR case, but suggest the possible lower cost when the effects such as the mass production are taken into account.

Journal Articles

Design study on Reduced-Moderation Water Reactor (RMWR) core for plutonium multiple recycling

Okubo, Tsutomu; Iwamura, Takamichi; Takeda, Renzo*; Yamauchi, Toyoaki*; Okada, Hiroyuki*

Proceedings of International Conference on Global Environment and Advanced Nuclear Power Plants (GENES4/ANP 2003) (CD-ROM), 8 Pages, 2003/00

A water-cooled reactor concept named Reduced-Moderation Water Reactor is under development for effective fuel utilization through plutonium multiple recycling based on the water-cooled reactor technology. The reactor aims at achievement of a high conversion ratio more than 1.0 with MOX fuel. Especially, the core performances during the Pu multiple recycling have been investigated for the advanced fuel reprocessing schemes with low decontamination factors than the current PUREX process, and are shown to achieve the conversion ratio more than 1.0 and the negative void reactivity coefficient.

Journal Articles

Visit to the Research Center for Nuclear Materials Recycle, Nagoya University

Yamashita, Toshiyuki

Isotope News, (583), p.20 - 24, 2002/11

no abstracts in English

Journal Articles

Present status and approach on advanced technologies of nuclear fuel, 3; Research and development of advanced recycle technology

Arie, Kazuo*; Abe, Tomoyuki*; Arai, Yasuo

Nihon Genshiryoku Gakkai-Shi, 44(8), p.593 - 599, 2002/08

no abstracts in English

Journal Articles

Status and future plan of breeding blanket development

Kawamura, Hiroshi; Tsuchiya, Kunihiko

FZKA-6720, p.151 - 160, 2002/06

no abstracts in English

Journal Articles

Design study on Reduced-Moderation Water Reactor (RMWR)

Okubo, Tsutomu; Iwamura, Takamichi; Yamamoto, Kazuhiko*; Okada, Hiroyuki*

Nihon Kikai Gakkai Dai-8-Kai Doryoku, Enerugi Gijutsu Shimpojiumu Koen Rombunshu, p.571 - 574, 2002/00

Based on the experienced light water reactor technology, conceptual design studies on advanced water-cooled reactors have been performed. They are named “Reduced-Moderation Water Reactor" (RMWR) with the high conversion ratio more than 1.0 and the negative void reactivity coefficients. Several concepts have been successfully established for them based on the neutronics calculations. Based on these concepts, detailed investigations on such as plutonium multiple recycling and control rod planning have been performed as well as improvement on core performances. Through these detailed core design investigation, the feasibility of those designs has been confirmed step by step.

Journal Articles

Core and system design of Reduced-Moderation Water Reactor with passive safety features

Iwamura, Takamichi; Okubo, Tsutomu; Yonomoto, Taisuke; Takeda, Renzo*; Moriya, Kumiaki*; Kanno, Minoru*

Proceedings of International Congress on Advanced Nuclear Power Plants (ICAPP) (CD-ROM), 8 Pages, 2002/00

Research and developments of reduced-moderation water reactor (RMWR) have been performed. The RMWR can attain the favorable characteristics such as high burn-up, long operation cycle, multiple recycling of plutonium and effective utilization of uranium resources, based on the matured LWR technologies. MOX fuel assemblies in the tight-lattice fuel rod arrangement are used to reduce the moderation of neutron, and hence, to increase the conversion ratio. The conceptual design has been accomplished for the small 330MWe RMWR core with the discharge burn-up of 60GWd/t and the operation cycle of 24 months, under the natural circulation cooling of the core. A breeding ratio of 1.01 and the negative void reactivity coefficient are simultaneously realized in the design. In the plant system design, the passive safety features are intended to be utilized mainly to improve the economy. At present, a hybrid one under the combination of the passive and the active components, and a fully passive one are proposed. The former has been evaluated to reduce the cost for the reactor components.

JAEA Reports

Report for the Participation in GLOBAL2001

Morimoto, Kyoichi; Shibata, Atsuhiro; Shigetome, Yoshiaki

JNC TN8200 2001-006, 19 Pages, 2001/12

JNC-TN8200-2001-006.pdf:0.92MB

Global2001 (International Conference: "Back-End of the Fuel Cycle: From Research to Solutions ") was held for six days from September 9 to September 14 in Paris in France. In this year, there were about 420 participants from each country and about 70 people participated from Japan. This conference consisted of the reactor and fuel cycle field, the reprocessing field, the disposal field, and the non-proliferation field, etc. The main topics of this conference were the back end of the nuclear fuel cycle, the management of long-lived nuclide, the advanced concept of reactor and fuels. Advanced fuel recycle technology division reported about the feasibility study on commercialized FR cycle systems, the nuclear fuel and the reprocessing process in the oral session and poster session. Each report was audited and information was collected. It is possible to refer to information on Global2001 by the following homepages. http://www.cea.fr/conferences/global2001 /index.him*

JAEA Reports

Study of uranium particle fuel fabrication with the external gelation process with the vibration dropping Method

Nishimura, Kazuhisa; Shoji, Shuichi*; *; Sato, Seiichi*; ; Endo, Hideo

JNC TN8430 2001-005, 64 Pages, 2001/09

JNC-TN8430-2001-005.pdf:4.1MB

The external gelation process is one of the candidates of MOX particle fuel fabrication for advanced recycle system. It was necessary to perform preliminary fuel fabrication with uranium before starting MOX tests. As the result of the preliminary examination, Basics conditions of the fabrication were obtained: (1)Optimized uranyl nitrate solution and PVA solution, as raw materials were prepared. (2)The frequency of vibration and the amount of flow were obtained with optimized broth (mixture) in the vibration dropping process. (3)The influence of composition of broth and concentration of ammonia solution on gelation process was obtained. (4)Impurities after aging, washing and drying spHerical gel were surveyed, (5)The spherical gel were calcined to oxide particles and the particles were characterized by TG-DTA, therefore it is certain that outlook on the sintered particles as final products is very clear. On the top of that, there were no fatal technicalities of the external gelation process through material balance and a diameter dispersion of spherical gel and oxide particles. It is necessary to perform uranium examination to solve some new problems, for instant, surface crack of spherical gel. Although almost of all the preparations are completed and fabrication examination of MOX particles with vibration dropping equipment are ready for starting.

JAEA Reports

A Study on modeling and numerical simulation of extraction in the CMPO-TBP system

; ;

JNC TN8400 2001-022, 60 Pages, 2001/03

JNC-TN8400-2001-022.pdf:1.31MB

A numerical simulation code for the TRUEX (Transuranium Extraction) process was developed. Concentration profiles of americium and europium were calculated for some experiments of the counter current extraction system those were carried out in CPF (Chemical Processing Facility) by using the code. Calculation profiles were in agreement with the experimental results. Operational conditions were also examinted for the americium recovery experiment by the TRUEX process carried out in the Plutonium Fuel Center. It was shown that lowering the concentration of nitric acid in the scrub solution and decreasing the flow rate of solvent and strip solution was effective for improving the performance of the stripping step and reducing the volume of the waste solution. In order to find the optimum conditions for various experiments, this simulation code was modified to calculate the concentration profiles of other metal elements such as zirconium and iron and the effect of oxalic acid on the extraction behavior of the metal elements. The calculated concentration profiles of americium and europium were varied by this modification. In the experiment at CPF, the calculations were carried out to obtain recovery ratio of americium in the product stream with the amount of oxalic acid added to the process. This calculation result showed that it was possible to improve the performance of decontamination of fission products by increasing oxalic acid concentration added to the process. The calculation was also carried out for finding the optimum conditions of oxalic acid concentration added to the europium recovery process.

JAEA Reports

An Analysis on the economics of plutonium recycle

Tatematsu, Kenji; Tanaka, Yoji*; Sato, Osamu

JAERI-Research 2001-014, 25 Pages, 2001/03

JAERI-Research-2001-014.pdf:2.23MB

no abstracts in English

76 (Records 1-20 displayed on this page)